Some Divergent Trigonometric Integrals

نویسنده

  • Erik Talvila
چکیده

1. Introduction. Browsing through an integral table on a dull Sunday afternoon some time ago, I came across four divergent trigonometric inte-grals. (See (1) and (2) below.) I was intrigued as to how these divergent integrals ended up in a respectable table. Tracing their history, it turned out they were originally " evaluated " when some convergent integrals, (5) and (6), were differentiated under the integral sign with respect to a parameter, formally yielding (1) and (2). We will give a simple proof that these inte-grals diverge, look at their history in print and then make some final remarks about necessary and sufficient conditions for differentiating under the integral sign. We have no motive in defaming either the (shockingly famous) mathematician who made the original error, or the editors of the otherwise fine tables in which the integrals appear. We all make mistakes and we're not out to point the finger at anyone. (In this regard see the last two exercises of Chapter 2 in [30].) We will also see that Maple and Mathematica have considerable difficulties with these integrals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Definite Integrals Involving Algebraic, Trigonometric and Bessel Functions

Some defin ite analytic integrals involving algebraic, trigonometric and Bessel functions which are needed in some electromagnetic calculations are proposed. The mathematical expansions are based on Mathematica (Wolfram) software and on some well known formulas. The agreement between the present expansion results and the numerical evaluation results is excellent.

متن کامل

Limits of elliptic hypergeometric integrals

In [16], the author proved a number of multivariate elliptic hypergeometric integrals. The purpose of the present note is to explore more carefully the various limiting cases (hyperbolic, trigonometric, rational, and classical) that exist. In particular, we show (using some new estimates of generalized gamma functions) that the hyperbolic integrals (previously treated as purely formal limits) a...

متن کامل

A study of inverse trigonometric integrals associated with three-variable Mahler measures, and some related identities

We prove several identities relating three-variable Mahler measures to integrals of inverse trigonometric functions. After deriving closed forms for most of these integrals, we obtain ten explicit formulas for three-variable Mahler measures. Several of these results generalize formulas due to Condon and Laĺın. As a corollary, we also obtain three q-series expansions for the dilogarithm.

متن کامل

The integrals in Gradshteyn and Ryzhik. Part 5: Some trigonometric integrals

We present evaluations and provide proofs of definite integrals involving the function xp cosn x. These formulae are generalizations of 3.761.11 and 3.822.1, among others, in the classical table of integrals by I. S. Gradshteyn and I. M. Ryzhik.

متن کامل

The Integrals in Gradhteyn and Ryzhik. Part 5: Some Trigonometric Integrals

We present evaluations and provide proofs of definite integrals involving the function x cos x. These formulae are generalizations of 3.761.11 and 3.822.1, among others, in the classical table of integrals by I. S. Gradshteyn and I. M. Ryzhik.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2001